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In this paper a new matrix method for the calculation of the intensity of X-rays diffracted by 
monodimensionally disordered structures is developed, which is to be regarded as derived from the 
method already given by Kakinoki & Komura. The present method allows simpler calculations 
in the case in which layers of different kinds are obtainable from one another by translation parallel 
to the layers. The subject is divided into two parts: in the first part the general theory for all possible 
cases is discussed, while in the second one some significant results are given. 

1.  I n t r o d u c t i o n  

The problem of the calculation of the intensity of 
X-rays diffracted by monodimensionally disordered 
structures has been dealt with by a number of authors; 
we recall here the papers by ttendricks & Teller (1942), 
Wilson (1942), Mering (1949), Jagodzinski (1949a, b, c, 
1954), Kakinoki & Komura (1952, 1954a, b, 1962), 
and Allegra (1961a, b, c, 1962). 

Hendricks & Teller's method of solution is charac- 
terized by a matrix formulation of the problem. 
Wilson has given a different treatment, where a set 
of difference equations replaces the matrices intro- 
duced by Hendricks & Teller. Mering applies criteria 
analogous to those introduced by Hendricks & Teller 
to the study of natural silicates• Jagodzinski, who 
had first extended the difference-equation method 
to a greater generality (1949a, b) subsequently (1954) 
proposed an elegant formulation of the problem, 
resting upon the application of group theoretical 
considerations to the probabilities of sequence among 
the layers. Kakinoki & Komura subjected the matrix 
method and the difference-equation method to detailed 
analysis, demonstrating their substantial equivalence; 
moreover they obtained for the first time (1952) a 
significant simplification ia I-Iendricks & Teller's 
mathematical procedure, allowing a lengthy matrix 
diagonalization to be avoided (Allegra, 1961a; 
K~kinoki & Komura, 1962). Moreover, Kakinoki & 
Komura extend the expression of the average dif- 
fracted intensity to the most general case of order 
of influence among layers (s >_ 2) even in the case 
in which layers are of different kinds (1954a, b). 

The author has developed another method of 
mathematical formulation of the problem (Allegra, 
1961b) which also extends the matrix formulation to 
the generality of cases; its relative convenience has 
allowed it to be applied to comparatively complicated 
cases (Allegra, 1961c, 1962). In the present paper a 
more complete mathematical exposition of the above 
method will be given. The subject is dealt with in 
the following two sections: in § 2 the general theory 

for all possible cases will be discussed, while in § 3 
some significant results obtained by the theory of 
§ 2 will be given. 

2 .  G e n e r a l  m a t h e m a t i c a l  f o r m u l a t i o n  

We will start  from the fundamental conclusions 
arrived at by Kakinoki & Komura (1952, 1954a). 
Kakinoki & Komura have expressed the mean dif- 
fracted intensity by a monodimensionally disordered 
structure as a sum of terms each due to the mean 
interference effect between every layer and its nth 
neighbour (n comprised between 0 and N - ~  ~ ,  the 
total number of layers). We repeat here the following 
matrices, introduced by Kakinoki & Komura: 

F = 

SI*S~M ~ * & M  . . .  S?S~M I 
V = S*2S~M S*S~M S*~S,M I 

;i 

Fi • • . 0 R f(p-i)~+i . . . . . . . . . .  0 t 
F2 ; Fp = f(p-z)z+~ • 

0 . . . F~ 0 . . . . . . . . . . . . .  fp~  

(2) 
Q = ~ P ;  

/) = 

(1) 

exp (-i~vl)Et . . . . . . . . . . . . . . . .  0 ] 
exp ( -  i ~ 2 ) E z  

L 
0 . . . . . . . . . . . . . . . . . . . . . . .  exp (-iq~r)Ez [R 

p = 

P p q  

P n  P12 . . .  P l r  ; 

. .  ° ° . . . . .  ° . . . .  

P r l  P~" . . .  P~,R 

p ( p - 1 ) l + i ,  ( q - l ) / + 1  • • • p ( p - 1 ) l + l , q l  1 
, o . , , . . , o . . . . . . . . , . , , . . , • 

p~z, (q-1)z+z • .  • Pp~,q~ 

(3) 

(4) 
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where: 

r is the number of distinct kinds of layer; 
s is the range of influence (Jagodzinski's 'l~eichweite') 

among the layers; 
R = r s ;  l=r s - i ;  
Sv is the form factor of the layer of pth kind, defined 

with respect to an intrinsic coordinate system; 
hh is a square matrix of order l, whose elements are 

all uni ty ;  
Fv is a diagonal matr ix of order l, whose elements 

are the frequencies of occurrence of all the l = r  s-i 
different groupings (complexions) of s successive 
layers, which terminate with the layer of pth kind; 

s being the scattering vector ( I s I = 2 s i n O / 2 ) ,  q~p= 
2~tp .s  is the phase shift corresponding to the 
vector tv, perpendicular to the layers, whose value 
measures the thickness of the layer of pth kind; 

lit is the unit  matr ix  of order l; 
P~q is the square matr ix  whose elements are the 

probabilities tha t  after every given complexion of 
s successive layers, terminating with a layer of 
the pth kind, there follows a complexion of the 
same order, terminating with a layer of the qth kind. 
Two adjacent complexions are defined as follows: 

kinds of layers 
1st complexion (jl, j2,ja, . . . ,  js-1, p) 
2nd complexion (j~, j3, . . . ,  js-i,  p, q) • 

In  this way the probabil i ty tha t  the second com- 
plexion follows the first one is also the probabili ty 
tha t  a layer of the qth kind follows the first complexion 
(ji, j2, . . . ,  p) of s successive layers. 

The mean interference term between nth neigh- 
bouring layers is expressed as follows according to 
Kakinoki & Komura:  

i ( n ) = s p u r  YFQ-+con jug . ;  ( / (0 )=spur  VF) (5) 

and the total  average intensity i diffracted by the 
structure is : 

N 

i = ~  ( N - n ) i ( n ) .  (6) 
n ~ 0  

The summation indicated in (6) may be effected 
either by  introducing the inverse matr ix ( l : _ Q ) - i ,  
as pointed out by Kakinoki & Komura (1952) and 
by  the author (1961a), or by  using the relations 
between the coefficients in the characteristic equation 
det (xl: - Q) = 0 and its roots and some other relations 
(Kakinoki & Kamura,  1961). 

In  the present paper a new matr ix  method is 
discussed, which may be considered as derived from 
the method given by  Kakinoki & Komura, while 
a different method has been recently proposed by 
these two authors (1962). The present method also 
introduces the inverse matr ix  ( E - Q )  -i, and shows 
advantages in mathematical  computation when two 
or more kinds of layer are obtainable from one another 
by  simple displacement parallel to the layers. We will 

introduce, in the following, the expression type of  
layer in order to indicate all those kinds of layer 
which are reducible to only one kind when the above 
mentioned displacement is taken into account. 

(a) The layers are of  m different types, and the order of  
influence s among layers is >_ 2 

Let us first consider, as an example, a structure 
built  up by layers of hexagonal symmetry  and of 
only one type, which may occupy the three positions 
A, B and C, with respect to a fixed axis perpendicular 
to the layers (Fig. 1); moreover, for the sake of 
simplicity, we will suppose tha t  no two adjacent 
layers can occupy the same position. I t  is well known 
tha t  a number of disordered structures may  be 
described as a proper statistical sequence of layers 
in these positions (Wilson, 1942b; Jagodzinski, 
1949b, c, 1954; Kakinoki & Komura,  1954b; Allegra, 
1962). I t  is apparent,  from inspection of Fig. 1, tha t  
the vector displacement "rl = ~-a-t-½b allows the change 
of A, B, and C into B, C and A respectively; while, 
conversely, the vector displacement "r2-- ½a-t--~b 
changes B, C and A into A, B and C respectively. 

Let us now represent, by the letters A, B and C, 
a complexion of adjacent layers, of any order: 

A C B C B A B A  . . . .  

By simply shifting all the layers either by the vector 

A 

A 
Fig. 1. Schematic representation of a hexagonal planar 

lattice, which may occupy the three positions indicated 
by A, B and C. The v 1 and T2 vectors allow the three 
positions to be mutually interchanged. 

"rl or by  the vector "r2, we obtain two other com- 

plexions: 
- ~ y B A C A C B C B .  . . 

A C B C B A B A  . . . 

"~2"~CBABA CA C. . " 

These three complexions of successive kinds of layer, 
formally distinct but  physically identical, are equiv- 
alent to the unique complexion of the vectors con- 
necting the origins of adjacent layers, considered as 
belonging to only one type. In  other words, indicating 
by c a vector perpendicular to the layers, whose 
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modulus measures their  constant thickness, the above 
said complexions may  be described by" 

t~t~t~t~t~t~t~... ( t ~ = c + ~ ;  t~=c+T~)  

where the number of vectors is obviously equal to 
the number of layers minus 1. 

The aim of this paper is to discuss briefly a matr ix  
method in which the probabil i ty correlation of ( s - 1 )  
order among tj  vectors ~ or among related quan- 
tities, such as the phase shift factors exp [ - i q ~ j ] =  
exp [ - 2 ~ i t j . s ]  ~ will be considered instead of the 
analogous correlation of s order among kinds of 
layer;  the t j  vectors must  be always considered as 
the sum of a vector component perpendicular to the 
layers and a vector component parallel to them. 
As shown from the example referred to above, in fact, 
in some cases a reduction in the number of different 
complexions will arise; consequently, in these cases, 
a reduction in the order of the involved matrices, 
and therefore a simplification in the related calcula- 
tions, will be achieved. 

Such reduction and simplification have been 
achieved by Kakinoki & Komura (1954b) and Komura 
(1962). These authors reduced their large matrices 
by  regarding these large matrices as consisting of 
minor matrices. :But the present author will show 
tha t  a new intensity equation containing only the 
reduced matrices can be directly derived. 

Let us consider a monodimensionally disordered 

which connect every pair of adjacent layer types;  
we will indicate by  (u) the index number of the general 
complexion, to which, when necessary, two other 
indices will be added in order to specify either the 
position, in the structure, or the type of the last layer 
connected by the vector complexion. As an example; 
Ur ( j )  means : complexion of ( s -  1) successive vectors, 
connecting (s) neighbouring layers of which the last  
is of j t h  type and in the (r) position. The index number 
(u) may assume all the integer values comprised 
between 1 and W - -  the total  number of distinct 
vector complexions; the succession of the values of (u) 
will be ordered so tha t  u ( j )>  u(k )  if j > k. Remember- 
ing tha t  two adjacent vectors are subjected to the 
obvious condition that ,  if the first vector connects 
layers of types (k0 and (k2), the second one must  
connect layers of types (k2) and (k3), and so on, 
we may express the total  number JV( j )  of com- 
plexions of the u ( j )  class ( j = l ,  2 , . . . , m )  in the 
following way: 

m m m 

W ( j )  = ~F, .~, . . . .~, n~k2nk,  k3. . . n ~ _ 2 j ;  
kl=l k 2 = 1  k s _ 2 = l  

= ~ ~ ( j ) .  
i=l  

(7) 

In order to evaluate i(n) (see (5)), we will now 
represent a group of neighbouring layers, with their  
corresponding types, vectors and complexions, by the 
following scheme : 

Position of every layer  

Type of every layer  

Index of the vectors 

Index of the complexions 

( r - s + l ) ( r - s + 2 ) . . . ( r - 1 )  r ( r + l ) . . . ( r + n - s + l ) ( r + n - s + 2 ) . . . ( r + n - 1 ) ( r T n )  

mi me . . .  ms-i j hi . . .  hn-s+l hn-,+, . . .  hn-1  lc 

lr-s+2 lr-s+z. • • lr lr+l • . .  lr+n-s+2 . . .  lr+n 

(s) 

structure constituted by  layers of m different types;  
the range of influence between layers is s(>_ 2). Let 
Vj (j = 1, 2, . . . ,  m) be the form factor of the layers of 
(j) type, defined with reference to an intrinsic origin. 
Moreover, let njk be the number of possible distinct 
vectors which connect the origins of two adjacent 
layers of types (j) and (k); the total  number n of 
distinct vectors will be given by:  

n = ~ n ~ .  
i=1 k = l  

Let (1) be the index of the general vector t ,;  ~ = 
2~tz. s will be the corresponding phase shift. Another 
index (r) will be added to the (1) index (/r), if necessary, 
in order to specify the position in the structure of the 
second layer connected by  the vector. Any complexion 
of (s) successive kinds of layer may be represented, 
in analogy to the example previously discussed, 
by  the complexion of the ( s - 1 )  successive vectors 

Referring to the above diagram, with the known 
notations and representing by AI ~ the phase shift 
between the nth neighbouring layers of types (j) 
and (k), 

(A (yjk = 27e(t~r+ 1 + t~,+2 + • • • + t~,+,)s 

= ~ , + 1 +  ~ , + ~ +  • • • + ~ , + , ) ,  

we will express i (n)  as follows: 

i (n)  = 

V(J) exp ( - iA ~ )  V(~) * + conjug. = 

V(J) exp ( - i~z~+l), exp ( - i~r~+2).., exp ( -  i~Zr+n) V (~)* 

+ conjug. (9) 

In  (9), the bar indicates the operation of averaging 
effected either over the possible vectors between 
layers, with fixed (j) and (k), or over all possible 
(j) and (k). Introducing, in analogy to Kakinoki & 
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Komura, the symbols f(u) and p(uu') to indicate the 
frequency of occurrence of the (u) complexion, and 
the probability that  a (u') complexion follows a (u) 
complexion, (5) becomes: m{ 
i(n) = ~ _Y .X ~ . . .  ~ V(J)f(Ur)p(Ur, Ur+1) 

j = l  k = l  ur(j)ur+] Ur+n(k) 

x exp ( - iqk+~), p(u~+~, Ur+2) exp ( - iqt~+~) 

× . . .  p(Ur+n-~, u~+n) exp (-iqt~+~)V(~)* / 

+ conjug. (10) 

where the first and the last complexions indicated 
in the summation must belong to the u(j) and the 
u(k) classes, while the other complexions may assume 
all possible values. 

The expression given above may be synthetically 
expressed by introducing the following vectors and 
square matrices of order ~ :  

~ ( 1 )  terms ~ ( 2 )  terms ~ ( m )  terms 

V =  I V ( ~ ) V ( ~ ) . . .  V (~)  V(~)  V ( ~ ) .  . . V(~.~ . . . V ( m l  . . . V ( " ~ ) I ~  

F = If(u)5("=')l~ = 

= (the corresponding column vector) 

f(1) . . . . . . . . . . . . . . .  0 

f(2) 

f(u) 

0 f(~4/') 

(11) 

Y 
(12) 

Q - IQ(uu ' ) lw  
Q(ll) Q(12) . . . . . .  Q(1W) 

= Q(21) Q ( 2 2 )  . . . . . . .  Q(2W) ; 

Q(uu') = p(uu') exp [ - i~z]  , (13) 

where 1 is the index of the last vector in the (u') 
complexion. 

Now it may be easily proved that  (10) reduces to: 

i(n) = VFQ~V*+conjug.;  i ( o ) =  YFV*• (14) 

Formally this equation is the same as equation (5), 
because equation (1) can be factorized into 

V = S*MoS 
where -' 

S = 

S~Ez 
S~Ez 

S~E~ 

and Mo = 

R 

M M . . . M  
M M . . . M  

: : : 

M M . . . M  

and hence 

spur VFQ~ = spur S*MoSFQ ~ 

= spur MoSFQ~S * = V'FQ~V'* 

where V is a vector whose s-component is the same 
as the ss-element of the diagonal matrix S. The 
discrepancy exists in Q, i.e. as seen from equation (3), 
Q(k)=~b(~)p(~) and ~bc~) is a diagonal matrix,~ while 
Q in equation (14) is not defined in a similar way, 
since Q(uu')=p(uu') exp (- i~1) ,  and ~1 contains two 
parts, one due to perpendicular displacement and the 
other due to parallel displacement. As a result of such 
a modification, the order of the matrices can be 
reduced and hence the calculation can be simplified, 
as the examples in the following paragraphs will show. 

On the assumption that  Qn _+ 0 for n-+ N (very 
great), so that :  

2V 

(N-- n)On = N(I:W-- Q) -1 
n = 0  

where I:W is the unit matrix of order W ,  the value 
of the average intensity diffracted by the structure 
becomes • 

2V 

i = ._Y ( N - n ) i ( n )  = NVFC4 * 
n = O  

= VF -½NE~,-+_,Y ( N - n ) Q  n V*+conjug. 
n = 0  

= N V F { - ½ F . ¥ - + ( I ' ~ - Q ) - I } V *  +conjug. (15) 

IA,, (average diffracted intensity per layer) 

-- i / N - -  VF{ - ½E~ + ( e ~ - Q l - ~ } q  * + coning. 
(15a) 

It  is to be observed that, although the Q matrix 
is of order ~A/', most of its terms have zero value; 
in fact, a given probability p(uu'), in order to have 
physical meaning, must refer to two complexions 
u and u' such that  the last ( s -2 )  vectors in the first 
complexion coincide with the first ( s -2 )  vectors in 
the second complexion, as is shown in (8). 

We have seen that  the convergence condition for 
the summation effected above is: 

lim Q~ = O. 
n---~ oo 

On the hypothesis that  the Q matrix may be 
diagonalized by the similarity operation Q = A A A -a, 
where 

)a . . . . . .  0 

---= 

0 . . . . . .  ;~x 

I" Superscr ip t  (k) is added  to  the  mat r ices  def ined b y  
Kak inok i  & K o m u r a  in order  to dis t inguish t h e m  from the  
corresponding ones used here b y  the  present  author•  
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then 

Q , ~ = A  

/ 
~.~ . . . . . .  0 / 

~'~ JA-i. 
o . . . . . .  ~ 

For n--> c¢ the resulting matr ix  does not tend to 0 
if and only if at  least an eigenvalue of Q is equal 
to unity.  This might be proved by the argument 
tha t  the absolute value of any term of the Q~ matrix, 
say the term characterized by  the indices (uu'), must 
not exceed the probabil i ty tha t  the (u) complexion 
be followed by the (u') complexion, after (n) inter- 
mediate complexions, so tha t  necessarily, in any case, 
I ; td-< I. 

The mathematical  condition which expresses the 
existence of an eigenvalue equal to uni ty  is: 
D e t ( l : f f - Q ) = 0 .  If this condition is fulfilled, the 
summation indicated in (15) cannot be effected as 
shown; in these cases the diffracted intensi ty shows 
infinite peaks, as always occurs in a three-dimen- 
sionally regular crystal of infinite size. 

We will recall here the algebraic relationships which 
connect the p(uu')  probabilities with the f ( u )  fre- 
quencies. These are: 

X 
f (u ' )  = 2 f ( u ) p ( u u ' )  (u' = 1, 2, . . . , t i f f )  (16) 

and may be derived by simple considerations. From 
the homogeneous system of linear equations (16), 
once p(uu')  are known, f (u ' )  can be easily obtained, 
using the obvious condition: 

X 
. I  f (u ' )  = 1. (17) 

u'~l 

A very frequent case is tha t  of a disordered structure 
whose layers all belong to the same type.~Denoting 
by V the layer form factor, and by | and I the row 
and column vectors, of order ~ ,  whose elements 
are all unity,  (15a) becomes: 

IAv= V V * { I F [ - - ½ E w + ( E , v - - Q ) - ~ ] ' i  +oonjug.} .  (18) 

Moreover we will observe tha t ,  if n is the number of 
possible translations between adjacent layers, the 
number ~4 r is given by (see (7)): 

dV=n~-~. (19) 

(b) The layers are of m different types, and the order of 
influence s among layers is 1 
This case has been dealt with in detail by Hendricks 

& Teller (1942) and Kakinoki & Komura (1952). 
We will here show a useful simplification which 
arises when different vector translations between 
adjacent layers of given types are possible. 

Let us introduce the following symbols: 

f(J) = frequency of occurrence of the layers of (j) type 
( j = l ,  2, . . .  m). 

Ir (j/C) = index of the general vector between the layers 
of types (j) and (/C), the la t ter  being in the r th  
position. This index may  vary  from 1 to njk. 

p(l(j/c)) = probabil i ty tha t  a layer of (j) type is 
followed by  a layer of (k) type by the l ( jk)  vector 
translation. 

Pj~ (overall probabil i ty tha t  a (j) layer is followed 
by a (/C) layer) 

~k 
= .Z p(l( j /c)) .  

l ( j k ) = l  

m 

f(~) = .X f(J)P~k . 
j = l  

Let us consider the general expression (9) for the 
total  average diffracted intensity. The term under 
average operation may now be writ ten in the following 
w a y "  

Vo) exp ( - iA q~j~) V(~) * 

= ~v 2 . . . ~ "  fo)VO)[ ~v ~ v . . .  2:  p(l~(jr)) 
~, r, s . . .  k----l, 2 . . . m  / l ( j r )  12(rs) ln(tk) 

x exp (-- iq)a), p(12(rs)) exp ( -- iq)z2).., p(ln(t/c)) 

x exp ( -- i~0z~)] V (k)* + conjug. (20) 

Let us make the substi tution: 

nr8 

o;(rs) = .~, p(l(rs)) exp (-- iqpZ(r,) ) (21) 
/(rs)=l 

and (20) reduces to" 

VcJl exp [ -  iA ~j~) V(~)* 

= .~, .~y,... ~y, f m  V(~I al  ( j r )a2(rs) . . .  a,,(tk) V(k) * 
j r . . .  k = l , 2 . . . m  

+ conjug. (22) 

Let us define the following vectors and square 
matrices of m order: the row vector 

V =  I V(1) V(2)... V(~)... V(m)l, 

and the corresponding column vector V; the diagonal 
matr ix  F = IF(tic)[ = [fo)~(~k)], and the matr ix  Q = 
]Q(j/c)l = [~(jk)]. 
The expression (22) may  now be written" 

Vo) exp ( -  iA ~j~) V (~)* = VFQnV * + conjug. (23) 

and from the general expressions (6) and (9) we imme- 
diately derive the value of IA~(~V --> ~ ,  Det (E - Q) # 0)" 

+conjug. (24) 

The order of the Q matr ix  here defined is never 
greater than the number of layer types;  this implies, 
in general, a considerable simplification in carrying 
out the calculations with respect to the preceding 
matr ix  formulations. 

In  the particular case in which all layers are of the 
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same type (m = 1), vectors and matrices above defined 
reduce to simple numbers. In particular: 

V(~¢) ---> V; F --> 1 (in factf(~)=f(Z)=l);  

Q -> ~ = ~ p(1) exp ( - i ~ )  (27) 

and (26) reduces to: 

+_!_1 
IAv= VV* 1-o~ 1-cu*J VV*(1-cx)(1-oO*" 

(2s) 

The calculation by Warren & Warekois (1955) 
corresponds to this type. 

3. Examples  of calculation of the average dif- 
fracted intensi ty for some models  of m o n o -  

d i m e n s i o n a l l y  d i s o r d e r e d  s t ruc tures  

(a) We will first consider a structure constituted by 
layers of two types, I and II ,  which may follow 
statistically one on another with order of influence 
equal to 2. We will also assume that  two adjacent 
layers of given kinds are connected by only one 
possible translation vector. 

Let us indicate by 1 the index of the vector ti, z. 
Let us indicate by 2 the index of the vector tii, z. 
Let us indicate by 3 the index of the vector tL H. 
Let us indicate by 4 the index of the vector tH, n. 

The complexion of ( s -  1) neighbouring vectors reduces 
in this case (s = 2) to the vectors themselves; therefore 
the (u) index varies from 1 to 4. The possible pairs 
of adjacent translations are 8: (11), (13), (21), (23), 
(32), (34), (42), (44). To these pairs the following 
probabilities (known numbers) correspond: 

p ( l l ) = q l ;  p ( l a ) = l - q z ;  p(21)=q~; p(23)=1-q~ 
p ( a 2 ) = l - q a ;  p(ad)=qa; p ( 4 2 ) = l - q 4 ;  p(44)=q4. 

(29) 

I t  is apparent that  from the four parameters qz, q~, qs 
and q4 all possible probabilities may be deduced. 
In fact, by the solution of the system (16), we get: 

q2(1-q4) (1-q~)(1-qd) 
1 ( 1 ) =  l ; f ( 2 ) = f ( 3 ) =  l ; 

qa(1 -q~) 
f(4) - ~, , 

/ = ( 1 - q d ) ( l + q ~ - q 0 + ( 1 - q 0 ( l + q s - q d )  • (30) 

The row vector V (see (11)) reduces to: 

V = l V ~ V a V ~ V ~ l ;  (31) 

V ~ and V ~ being the intrinsic form factors of the two 
types of layer. The F (expression (12)) and Q (ex- 
pression (13)) matrices have the following form 
(q~=2gt~.s)  : 

F = 

q~e-/qn 
Q = q~e-i~z 

0 
0 

f(1) 0 0 0 ; 
0 f(2) 0 0 
o o f(3) o ~ 
0 0 0 f(4) J 

0 (1 -q l ) e  -iq~ 
0 (1 -q~)e -~q~ 

(1 -qs)e - ~  0 
(1 - q4)e - ~  0 

0 
0 

g3e-~4 
q.4e -iq~4 

(32) 

and, substituting in (15a) and developing the calcula- 
tions, we obtain: 

I .v=  1/l{(1-qd)(l +q.-q~)v~v ~* 
+ (1 -qh(1  +qs-qd)  VBV ~* 

[ V A V ~* a + (V  A VB*d ~ + V A* V % m ) f l  + V B VB*7,] 

+ (qa-- 1)ei~dJ[(qz --q2) + (q~.-- 1)e'~]J 
+ [conjug.]} (33) 

in which 

o¢ = (1 - qa){q:i(~+~S)(ei¢4 _ q4) + [(ql - q2) (1 + q2 - ql) 
+ (qz-  1)ei¢1][(qd-q3) + (q3-1)d*4]} 

fl = (1-q4)(1-qO(ei¢a-ql  +q2)(ei~4-qd+qs) 

7 = (1 - qz){qsei(~2+¢s)(e i*~- ql) + [(qd- q8)(1 + q s -  qd) 
+ (qd- 1)eiq~dJ[(ql -q~.) + (q2-1 )eigl]} . (34) 

(b) A disordered structure constituted by layers of 
the same type, which may follow one on another by 
two possible translations (tz and t2) with s=2 ,  will 
be considered now. 

This statistical model has been applied to a number 
of cases (Wilson, 1942; I-Iendricks & Teller, 1942; 
Mering, 1950; Kakinoki & Komura, 1954b). The new 
general formula which will be given here, in which 
the values of tz and t2 are completely unspecified, 
has been applied in particular by Cesari, Morelli & 
:Favretto (1961) to the structural study of some 
natural silicates. 

In this case also the complexion of ( s - l )  neigh- 
bouring translations reduces to the two translations 
themselves. We will indicate by: 

q~ the probability p(l l ) ,  
( l -q1)  the probability p(12), 

q2 the probability p(22), 
(1-q~) the probability p(21). 

By solving the system (16), we obtain, for the 
frequencies of occurrence of the two translations: 

1 - -  q~. . 1 - -  q l  ( 3 5 )  
f(1) - 2 - ( q l + q 2 ) '  f(2) = 2--(qz+q2) 

while the F and O matrices have the following form: 

0 f(2) ; Q -  (l_q2)e-~o~ q: - i~  
(36) 
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We may  now obtain the average diffracted intensi ty 
by the expression (18). The final result is: 

IA~ = V V *  

(ql + q~)(1 - ql)(1 - q~)[1 - cos ( 9 1 -  92)] 
× 

[ 2 -  (ql + q2)]{[1 - (ql +q2) + (ql +ql  + qlq2)] 
+ [q2-  ql - q2(ql + q2)] cos 91 + [ q l -  q2 - ql(ql + qg)] 
x cos 93 - [1 - (ql + q~)] cos (91 + 9 ~.) + qlq~ 
x cos ( 9 1 -  99)} • (37) 

If  ql = 1 -q~ = 1 - a(put), 9i = 9 -  (2~/3) (h-k)  and 
9 2 -  9 +  (2~/3)(h-k)  where 9 = 2 g l ,  1 being the con- 
t inuous variable along c* corresponding to one layer 
thickness, equation (37) becomes 

3c~ (1 - -  a) 
IAv = V V *  2 _ 3 3 + 3 3 2 _ +  V3(1_2c,) sin 9 + c o s  9 '  

h - k = 3 n  + 1 

which is the same as the result obtained by  Paterson 
(1952) where s = l .  

If ql=q2 = ~ (put), and 91 and 9~ are the same as 
before, equation i37) becomes 

3 ~  (1  - oc) 
IAv = V V * -  

4-8~+5c~2+4c~ ~' cos 9 - 4 ( 1 - 2 3 )  cos ~' 9 

which is the same as the result obtained by Wilson 
(1942), Hendricks & Teller (1942) and Kakinoki  & 
Komura  (1945b). 

In  Fig. 2, as an example, some curves are repro- 
duced (by kind permission of Cesari et al., 1962), 
showing the values of the function I A v / V V *  against 
s, for appropriate values of the physical parameters.  
These curves have been calculated by the formula (37), 
in order to examine the type  of disorder occurring 
in some clay minerals of the i l l i te-montmorollonite 
type.  

(c) The third case which will be considered now is 
given by a structure consti tuted by layers of the same 
kind, with hexagonal or trigonal symmetry.  The layers 
may  follow one on another by  the two equivalent 
translations" tz = ] a  + ½b + c, t2 = ½a + §b + c, where 
a and b are the repetition vectors of the bidimensional 
uni t  cell of the layer (Fig. 1) and c is the vector 
component perpendicular to the layers" the order of 
influence s is equal to 3. This statistical model, tha t  
may  be applied ill particular to a wide class of close- 
packed structures, has been already considered by  
Jagodzinski (1949b) and Kakinoki  & Komura  (1954b) 
with a different mathematical  formulation; however, 
no compact formula for IAv has been given unti l  now. 

The complexions of 2 ( = s -  1) adjacent translations 
are 4, and will be labelled by  the symbols I, II ,  I I I ,  
and IV: 

I - (11); I I  - ( 1 2 ) ;  I I I  - ( 2 1 ) ;  I V  - ( 2 2 ) ,  ( 3 8 )  

1 and 2 being the indices of the vectors tl and t2. 
By  making use of symmetry  considerations, we 
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Fig. 2. Plots showing the interference function IAv/VV* 
against s ( l s [=2  sin 0/~) for a system consti tuted by two 
types of layers of different thickness (c 1 and c~), and prac- 
tically equal values of the layer form factor V. I t  is intended 
tha t  the reciprocal vector s points perpendicularly to the 
layers, qz and q2 represent the probabilities tha t  the first- 
and second-type layers respectively follow layers of the 
same type. Formula (37) has been used (by kind permission 
of M. Cesari). 

obtain the following relations among probabil i ty 
parameters : 

p(I I ) - p ( I V  IV) = 1 -  a; p(I  I I ) - -p ( IV  III)  = a; 

p i l l  I II)  = p ( I I I  I I ) =  ] -  z; p i l l  I V ) = p ( I I I  I) = z. 

(39) 

Resolution of the system (16) leads to the following 
values for the frequencies of the four complexions" 
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"c 
f ( I )= f ( IV) -  2(a+ ~); a (40)  ~" f(II) = f ( I I I ) -  ~((~+ 3) 

10.0 

and  the  F and  Q matr ices  resul t :  

Q =  

f(I) o 
o f(II)  

F =  0 0 
0 0 

0 0 
0 0 

f ( I I I )  0 
o f ( IV)  

( 1 -  o')e - i u  a e  - i ~  0 
0 0 ( 1 -  T)e - i~  

Te - i ~  ( 1 -  T)e -iq~ 0 
0 0 ae - i~  

0 
T~--iq~2 

o 
(i - a)e - i~  

(41) 

We m a y  now use the  expression (18), under  the 
convergence condition Det  (E - Q) 4: 0. In part icular ,  
indicat ing by  h, k and  l the  scalar  products  a .  s, b .  s, 
c . s  respectively,  the  above condition is a lways satis- 
fied, for non-par t icu lar  values of a and  3, in cor- 
respondence to those values of s for which h - k =  
3 n _  1. Confining our a t ten t ion  to these values, we 
get, f rom (18)" 

IAv = V V* 3a~(2-- a -  3) 
a T ~  

[1 + ( 1 - - o ' - - ~ ) ~ ] + ( 1 - - a - - ~ )  cos 2gl  

[1 + (1 -- a) ~ + (2 -- a - -  w)2(a-- T) ~ + (1 -- ~)2(1 -- a - -  T) 9 
+ ( 1 - -  a - -  T) 4] + 2[ (  1 - -  a)  + ( 1 - -  a ) ( 2  - -  a - -  3 ) ( 3  - -  a) 
+ (2--  a - -  T)( r - -  a ) ( l  -- r ) (a  + T-- I) -- (I -- 3) 
x (a + ~-- 1)a] cos 2xd + 2 [ ( 2 -  a -  ~)~(~2_ a~) 
+ (1 - 3)(1 - a ) ( a +  3 - 1 ) ]  cos 2~2l + 2(a + z -  1) 
x [ 1 - 3 -  (1 - a)(o'+ z -  1)] cos 2 ~ 3 l -  2(a + z -  1) ~ 

x cos 2 ~ 4 / .  (42) 

I n  Fig. 3, as an  example,  some curves have  been 
repor ted  of the  funct ion IAvl V V* against  1, calculated 
by  the  formula  (42) wi th  different  values of a and  3. 

By  using the  present  theory,  the au thor  has carried 
out  the  calculation of the  average diffracted in tens i ty  
for some other  models of monodimensional ly dis- 
ordered s t ruc tures ;  the  results  have a l ready  been 
repor ted  in another  paper  (Allegra, 1961c). 

The au thor  thanks  Dr  Kak inok i  for ve ry  helpful 
discussions and  impor t an t  suggestions. He also 
acknowledges the  constant  help received f rom Prof. 
P. Corradini,  of the  Univers i ty  of Naples,  I t a l y  and  
the  encouragement  received from Prof. G. Na t t a .  
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Fig. 3. Plots of the interference function IAv/VV*, against/, 
calculated by the formula (42) for different pairs of values 
of a and T. 
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